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Description of the Operation of Simrit Seals using the Finite Element 
Method  (FEM)

  Numerical simulation procedures are now an essential 
component of modern development processes. These 
methods can be used at a very early stage of the devel-
opment process of components to test their feasibility. 
The development process is significantly faster and 
more economical and the quality of the product can 
be significantly improved. Such simulations cannot of 
course entirely replaced component testing, because it 
is impossible to simulate reality exactly. However, the 
number of tests required can be significantly reduced.

A common simulation procedure is the "Finite Element 
Method (FEM)". A component with a complex shape 
is divided into a large finite number of small elements, 
referred to as finite elements. Depending in the prob-
lem and the geometry the elements are triangles and 
squares or pyramids or cubes. The division into small 
discrete elements that describe the geometry of the 
component under consideration make it possible to de-
scribe the behaviour of the component numerically and 
to predict it on the computer. This makes it very easy to 
test different geometries, to test different materials and 
to investigate the behaviour of the component under 
various loads without having to manufacture prototypes 
at every stage and run tests. The simulation procedure 
can also be used to "look inside" the component to gain 
a better understanding of its behaviour.

    The prerequisite for rational use of the simulation 
methods is to imitate real life as closely as possible. 
This includes accurate knowledge of the loads to be 
applied to the component (temperatures, pressures, 
forces, displacements, …), and particularly the correct 
description of the behaviour of the material. Behaviour 
of the material is understood as the interaction between 
application of an external load (e.g. a force) and the 
reaction of the material (e.g. a change in length). This 
interaction is generally determined by tensile trials on a 
simple test body. The result of such as experiment is de-
scribed in (→ Fig. 1) with an elastomer as an example, 
where the mechanical tension is shown as the force and 
the elongation as the change in length. In the simplest 
case there is a linear relationship between the force 
applied and the change in length. This can be observed 
e.g. with metal materials if the load does not exceed a 
specific value (yield point). In  (→ Fig. 1) it can be see 

that with elastomers there is not a linear relationship 
between tension and elongation but this relationship is 
non-linear. Another difference from metal materials is 
that elastomers are frequently very strongly deformed, 
elongations of over 100% are not uncommon.

To be able to represent the material behaviour in a 
computer simulation, the relationship between ten-
sion and elongation must be described in the form of 
 "material models". This is very simple for the linear 
 tension-elongation relationship. However, it is much 
more complicated for elastomers: There is a whole 
 variety of material models for non-linear material 
 behaviour in the literature. These models are all part
of the class of hyperelastic material models.

The material parameters are included in the material 
models. The parameters can be used to modify the 
material model for different materials. There is only one 
material parameter for linear material behaviour: the 
pitch of straight lines, known as the modulus of elastic-
ity of the material. The number of material parameters 
under the hyperelastic laws varies depending on the 
model between one and infinitely many parameters.

A selection of these material models is shown in 
(→ Fig. 2) in addition to the material testing. It can 
clearly be seen that these models predict the actual 
material behaviour with varying degrees of accuracy. 
In particular not all models are capable of describing 
the upturn in the tension-elongation relationship. The 
material models vary even more when predicting a 
compressive stress (→ Fig. 3), where the same material 
parameters were used to describe the tensile trials. The 
difference between two basically different classes of 
 hyperelastic material models can be clearly seen here:
on one hand there is the class of phenomenological 
material models. They describe the tension-elonga-
tion curve with various mathematical functions. Some 
examples are the Mooney-Rivlin model and the Ogden 
model. These models describe loads to which the mate-
rial parameters were adapted (e.g. a tensile load) very 
well. However, problems are frequently encountered 
if other types of loads (e.g. a compressive load) must 
be extrapolated. In extreme cases tensile loads may 
occur with compressive deformation, which physically 
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indicates an unnatural behaviour. As a result many dif-
ferent experiments are required when using this class of 
material models, which makes determining the material 
parameters very expensive and complex.

The second class of material models are referred to as 
physically motivated models. They describe the physics 
of the material, i.e. they have a background based on 
physical properties. As a result these models basically 
predict physically reasonable results, and it is sufficient 
to determine the material parameters on the basis of 
only one test (e.g. a tensile trial). A disadvantage of 
this class of material models is that development is very 
complex, which is why there are very few physical 
material models for elastomers. The best-known model 
is the Neo-Hooke model, which however is not capable 
of describing the increase in stiffness in the tensile trial. 
This is why we have developed our own, physically 
based material model, which correctly describes the 

complete mechanical behaviour of elastomers. Use of 
the F reudenberg material model has the following ad-
vantages: it can correctly predict the strongly non-linear 
material behaviour of elastomers, including the upturn 
with very large deformations, for loads of up to several 
hundred percent elongation.

Because only simple tensile trials are required to de-
termine material parameters, the parameters of new 
materials can be determined very quickly and the influ-
ence of the material on the behaviour of the component 
can be simulated. In addition, the correct material 
behaviour is reproduced for any desired stress types by 
the Freudenberg material model. Even the behaviour of 
complex components can be simulated and the behav-
iour of such components can be simulated under any 
desired loads. All simulations of elastomer components 
at Freudenberg are conducted exclusively with this ma-
terial model for this reason.
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   Fig. 1 Tensile trials on an elastomer  
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   Fig. 2 Material models adapted to a single-axis tensile trial 
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Fig. 3 Material models adapted to a single-axis compressive trial
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Simmerring
The deformed geometry of a standard Simmerring in 
installation position under a 3 bar pressure load is 
shown in (→ Fig. 4). (→ Fig. 5) shows the optimised 
profile under the same operating conditions with refer-
ence to minimising the contact area of the sealing lip 
on the shaft.
The animation shows the deformation of a special pro-
file that compensates for large tilts of the shaft. It is clear 
that in spite of tilting the sealing lip on the unloaded 
side is still in contact with the shaft. (→ animation on 
DVD).

  

3 bar

  

 Fig. 4 Simmerring with normal profile 

  

3 bar

  

 Fig. 5 Simmerring with optimised profile 

Hydraulic Seal
The undeformed geometry of the Merkel U-Ring LF 
300 is shown in (→ Fig. 6). The U-ring is installed in 
a groove, and is under pressure in operation. The 
deformation at a pressure of 100 bar can be seen in 
(→ Fig. 7).
The animation shows the deformation of the U-ring as 
the pressure increases from 0 bar to 100 bar. The load 
involved on the material is shown in addition to the 
 deformation. (→ animation on DVD).

    

 Fig. 6 Merkel U-Ring LF 300 undeformed 

  

100 bar

  

 Fig. 7 Merkel U-ring deformed  100 bar

 Examples
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Pneumatic Seal
The undeformed geometry of the pneumatic seal of the 
Merkel U-Ring NAPN 125 is shown in (→ Fig. 8). The 
seal is tied into a groove on the piston and installed in 
the cylinder bore with the piston rod. The deformation 
of the seal (→ Fig. 9) in operation is obvious at a load 
pressure of 10 bar.
The animation shows the deformation of the installed 
pneumatic seal as the pressure increases from
0 to 10 bar. The load involved on the material is also 
shown in addition to the deformation (→ animation on 
DVD).

    

 Fig. 8 Merkel U-Ring NAPN 125 undeformed 

  

10 bar

  

 Fig. 9 Merkel U-Ring NAPN 125 deformed 10 bar 

ISC O-Ring
The geometry of a correctly installed standard ISC 
O-Ring 40-4 at 100 bar is shown in (→ Fig. 10). 
(→ Fig. 11) shows the same ring with an excessive gap 
width in connection with an excessively soft material, 
resulting in a gap extrusion.
Both the deformation and the load involved on the 
 material can be seen in the two pictures. 
The deformation of the ISC O-Ring under pressure can 
be seen in the animation. The load involved on the 
material is also shown in addition to the deformation 
(→ animation on DVD).

  

100 bar

  

 Fig. 10 ISC O-Ring 40-4 100 bar 

  

100 bar

  

 Fig. 11 ISC O-Ring 40-4 100 bar gap extrusion 
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Elastomer CompositeComponent
The undeformed geometry of a Plug & Seal plug con-
nection is shown in (→ Fig. 12). The deformation of the 
installed component at a pressure of 10 bar can be 
seen in (→ Fig. 13).
The animation shows the deformation of the deformed 
component at a pressure increase of up to 10 bar. The 
load involved on the material is also shown in addition 
to the deformation (→ animation on DVD).

    

 Fig. 12 Plug & Seal plug connection undeformed 

  

10 bar

  

 Fig. 13 Plug & Seal plug connection deformed  10 bar

Bellows
The installation of a fixed-joint bellows is shown in 
(→ Fig. 14). The axially sprung and tilted structure of 
the bellows can be seen in (→ Fig. 15). 
The animation shows the axial deflection with the asso-
ciated tilting of the bellows (→ animation on DVD).

 Fig. 14 Bellows  installed

 Fig. 15 Bellows  deflected and tilted
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Diaphragm
The undeformed geometry of a diaphragm in un-
mounted position is shown in (→ Fig. 16). The axially 
deflected structure with 0,5 bar pressure on the bottom 
is shown in (→ Fig. 17). The red nodes represent the 
area to which a piston is attached.
The animation shows the progress of the piston in the 
axial direction (first up, then down). Then a pressure of 
0,5 bar is applied to the bottom of the diaphragm. The 
load involved on the material is also shown in addition 
to the deformation (→ animation on DVD).

  

0,5 bar

  

 Fig. 16 Diaphragm undeformed 

  

0,5 bar

  

 Fig. 17 Diaphragm  axially deformed

 




